Periodic Motion of a Mass-Spring System
نویسندگان
چکیده
The equations of planar motion of a mass attached to two anchored massless springs form a symmetric Hamiltonian system. The system has a single dimensionless parameter L, corresponding to the spacing between the anchors. For L > 1, there is a stable equilibrium at which the springs are in tension and lie on a line, but for L < 1, this equilibrium has both springs in compression, and is unstable. However, there are then two stable equilibria at which both springs carry no force. Oscillations are studied in both regimes, but more systematically in the tension case, where techniques of bifurcation theory, numerical approximation and numerical simulation are used to explore the rich variety of periodic solutions.
منابع مشابه
Identification of Nonlinear Modal Interactions in a Beam-Mass-Spring-Damper System based on Mono-Frequency Vibration Response
In this paper, nonlinear modal interactions caused by one-to-three internal resonance in a beam-mass-spring-damper system are investigated based on nonlinear system identification. For this purpose, the equations governing the transverse vibrations of the beam and mass are analyzed via the multiple scale method and the vibration response of the system under primary resonance is extracted. Then,...
متن کاملDynamics of a mass-spring-pendulum system with vastly different frequencies
Abstract. We investigate the dynamics of a simple pendulum coupled to a horizontal mass-spring system. The spring is assumed to have a very large stiffness value such that the natural frequency of the mass-spring oscillator, when uncoupled from the pendulum, is an order of magnitude larger than that of the oscillations of the pendulum. The leading order dynamics of the autonomous coupled system...
متن کاملVibrational characteristics of a spinning thermally affected cylindrical shell conveying viscous fluid flow carrying spring-mass systems
In this article, the vibrational behavior of a spinning cylindrical thick shell carrying spring- mass systems and conveying viscos fluid flow under various temperature distributions is investigated. This structure rotates about axial direction and the formulations include the coriolis and centrifugal effects. In addition, this system is conveying viscous fluid, and the related force is calculat...
متن کاملChaotic Response and Bifurcation Analysis of a Timoshenko Beam with Backlash Support Subjected to Moving Masses
A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes technique and solved using the Runge–Kutta method. The analysis methods employed in...
متن کاملUsing the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode
In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...
متن کامل